EdTech awards 2021: Duckietown finalist in 3 categories!

Duckietown reaches the finals in the EdTech Awards 2021

The EdTech awards are the largest and most competitive recognition program in all of education technology.

The competition, led by the EdTech digest, recognizes the biggest names in edtech – and those who soon will be, by identifying all over the world the products, services and people that bet promote education through the use of technology, for the benefit of learners.

The 2021 edition has brought a big surprise to Duckietown, as it was nominated as a finalist in 3 different categories:

  • Cool Tool Award: as robotics (for learning, education) solution;

  • Cool Tool Award: as higher education solution;

  • Trendsetter Award: as a product or service setting a trend in education technologies.

Although a final is just a starting point, we are proud of the hard work done by the team in this particularly difficult year of pandemic and lockdowns, and grateful to you all for the incredible support, constructive feedback and contributions!

To the future, and beyond!

(hidden) Want to learn more about us?

AI-DO 3 – Urban Event Winners

In case you missed it AI-DO 3 has come and gone. Interested in reliving the competition? Here’s the video.

We had a great time at NeurIPS hosting the Third Edition of the AI Driving Olympics. As usual the sound of Duckies attracted an engaging and supportive crowd.

 

Racing Event

The competition began with the Racing Event, hosted by AWS DeepRacer. They ran their top 10 submissions and selected the winner by who could complete the fastest lap.

Racing Event Winner 
Ayrat Baykov at 8:08 seconds

 

Advanced Perception Event

The winners of the Advanced Perception Event hosted by APTIV and the nuScenes dataset were announced. Luckily a member of the winning team was present to accept the award.

Rank 3
CenterTrack – Open and Vision

Rank 2
VV_Team

Rank 1
StanfordlPRL-TRI

 

Urban Event

The competition culminated with Duckietown’s own Urban Driving Event, where we ran the top submissions for each of the three challenges on our competition tracks.

Winners

 

Lane Following 

JBRRussia1: Konstantin Chaika, Nikita Sazanovich, Kirill Krinkin, Max Kuzmin

Lane Following with Vehicles

phmarm

Lane Following with Vehicles and Intersections

frank_qcd_qk

 

Final Scoreboard

A few pictures from the event

Congratulations to all the winners and thanks for participating in the competition. We look forward to seeing you for AI-DO 4!

Community Spotlight: Kirill Krinkin – STEM Intensive Learning Approach


In the world of engineering education, there are many excellent courses, but often the curriculum has one serious drawback – the lack of good connectivity between different topics. Over in Saint Petersburg, Russia, 
Kirill Krinkin from SPbETU and JetBrains Research has been using Duckietown to address this problem through an intensive STEM winter course.

STEM Intensive Learning Approach

by Kirill Krinkin

The first part of the school program was a week of classes in the base topic areas which were chosen to complement each other and help students see the connection between seemingly different things – mathematics, electronics and programming.

Of course, the main goal of the program was to give students the opportunity to put their new found knowledge into practice themselves.

Duckietown was the perfect fit for our course because it offered a hands-on learning experience for all of our main topics areas, and once we covered those subject in the first lessons, we challenged the students with much more complex tasks – in the form of projects – in the second half of the course. It made for an exciting and engaging curriculum because students could address a problem, write a program to solve it, and then immediately launch it on a real robot. 

The main advantage of Duckietown compared to many other platforms is that there is a very small learning curve: people who knew nothing about programming and robotics started working on projects after only a few days!

Overview of the course

Part 1 – Main Topic Areas

Subject 1: Linear Algebra

Students spent one day studying vectors and matrices, systems of linear equations, etc. Practical tasks were built in an interactive mode: the proposed tasks were solved individually, and the teacher and other students gave comments and tips.

 

Subject 2: Electricity and Simple Circuits

Students studied the basics of electrodynamics: voltage, current, resistance, Ohm’s law and Kirchhoff’s laws. Practical tasks were partially done in the electric circuits simulator or performed on the board, but more time was devoted to building real circuits, such as logic circuits, oscillatory circuits, etc.

 

Subject 3: Computer Architecture

In a sense, a bridge connecting physics and programming. Students studied the fundamental basis, the significance of which is more theoretical than practical. As a practice, students independently designed arithmetic-logic circuits in the simulator.

 

Subject 4: Programming

Python 2 was chosen as the programming language, as it is used in programming under ROS. After we taught the material and gave examples of solving problems, students were challenged with their own problems to solve, which we then evaluated. 

 

Subject 5: ROS

Here the students started programming robots. Throughout the school day, students sat at computers, running the program code that the teacher talked about. They were able to independently launch the basic units of ROS, and also get acquainted with the Duckietown project. At the end of this day, students were ready to begin the design part of the course – solving practical problems.

Part 2 – Projects

1. Calibration of colors

Duckiebots needs to calibrate the camera when lighting conditions change, so this project focussed on the task of automatic calibration. The problem is that color ranges are very sensitive to light. Participants implemented a utility that would highlight the desired colors on the frame (red, white and yellow) and build ranges for each of the colors in HSV format.

2. Duck Taxi

The idea of this project was that Duckiebot could stop near some object, pick it up and then continue along, following a certain route. Of course, a bright yellow Duckie was the chosen passenger. The participants divided this task into two: detection and movement along the graph.

drive while Duckie is not detected

Duckie identified as a yellow spot with an orange triangle 🙂

Building a route according to the road graph and destination point

3. Building a road map

The goal of this project was to build a road map without providing a priori environmental data for the Duckiebot, relying solely on camera data. Here’s the working scheme of the algorithm developed by the participants:

4. The patrol car

This project was invented by the students themselves. They offered to teach one Duckiebot, the “patrol”, to find, follow, and stop an “intruding” Duckiebot. The students used ArUco markers to identify the Intruder on the road as they are easy to work with and they allow you to determine the orientation and distance of the marker. Next, the team changed the state machine of the Patrol Duckiebot so that when approaching the stop-line the bot would continue through the intersection without stopping. Finally, the team was able to get the Patrol Duckiebot to stop the Intruder bot by connecting via SSH and turning it off. The algorithm of the patrol robot can be represented as the following scheme:

Summary

Students walked away from our STEM intensive learning program with the foundations of autonomous driving, from the theoretical math and physics behind the programming and circuitry to the complex challenges of navigating through a city. We were successful in remaining accessible to beginners in a particular area, but also providing materials for repetition and consolidation to experienced students. Duckietown is an excellent resource for bringing education to life.

After our course ended students were asked about their experience. 100% of them said that the program exceed their expectations. We can certainly say that the Duckietown platform played a pivotal role in our success.

Duckietown Workshop at RoboCup Junior

Duckietown Workshop at RoboCup Junior

In collaboration with the RoboCup Federation, the Duckietown Foundation will be offering workshops at RoboCup 2019 in Sydney, Australia, providing a hands-on introduction to the Duckietown platform.

We will be hosting three one-day workshops as part of RoboCup 2019 from July 4-6, 2019  for teachers, students, and independent learners who are interested in finding out more about the Duckietown platform. Attendance is completely free and everyone is welcome to apply, even if you are not participating in RoboCup. There are no formal requirements, though basic familiarity with GNU/Linux and shell usage is recommended. 

If you would like to apply to attend a workshop, please complete this form

We will have Duckiebots and Duckietowns for participants to use. However, you are more than welcome to bring your own Duckiebots, available for purchase at https://get.duckietown.com

Congratulations to the winners of the second edition of the AI Driving Olympics!

Team JetBrains came out on top on all 3 challenges

It was a busy (and squeaky) few days at the International Conference on Robotics and Automation in Montreal for the organizers and competitors of the AI Driving Olympics. 

The finals were kicked off by a semifinals round, where we the top 5 submissions from the Lane Following in Simulation leaderboard. The finalists (JBRRussia and MYF) moved forward to the more complicated challenges of Lane Following with Vehicles and Lane Following with Vehicles and Intersections. 

Results from the AI-DO2 Finals event on May 22, 2019 at ICRA

If you couldn’t make it to the event and missed the live stream on Facebook, here’s a short video of the first run of the JetBrains Lane Following submission.

Thanks to everyone that competed, dropped in to say hello, and cheered on the finalists by sending the song of the Duckie down the corridors of the Palais des Congrès. 

A few pictures from the event

Don't know much about the AI Driving Olympics?

It is an accessible and reproducible autonomous car competition designed with straightforward standardized hardware, software and interfaces.

Get Started

Step 1: Build and test your agent with our available templates and baselines

Step 2: Submit to a challenge

Check out the leaderboard

View your submission in simulation

Step 3: Run your submission on a robot

AI-DO 1 at NeurIPS report. Congratulations to our winners!

The winners of AIDO-1 at NeurIPS

duckie-only-transparent

There was a great turnout for the first AI Driving Olympics competition, which took place at the NeurIPS conference in Montreal, Canada on Dec 8, 2018. In the finals, the submissions from the top five competitors were run from  five different locations on the competition track. 

Our top five competitors were awarded $3000 worth of AWS Credits (thank you AWS!) and a trip to one of nuTonomy’s offices for a ride in one of their self-driving cars (thanks APTIV!) 

2000px-Amazon_Web_Services_Logo.svg
aptiv_logo_color_rgb

WINNER

Team Panasonic R&D Center Singapore & NUS

(Wei Gao)


Check out the submission.

The approach: We used the random template for its flexibility and created a debug framework to test the algorithm. After that, we created one python package for our algorithm and used the random template to directly call it. The algorithm basically contains three parts: 1. Perception, 2. Prediction and 3. Control. Prediction plays the most important role when the robot is at the sharp turn where the camera can not observe useful information.

2nd Place

Jon Plante


Check out the submission.

The approach:  “I tried and imitate what a human does when he follows a lane. I believe the human tries to center itself at all times in the lane using the two lines as guides. I think the human implicitly projects the two lines into the horizon and where they intersect is where the human directs the vehicle towards.”

 

3rd Place

Vincent Mai


Check out the submission.

The approach: “The AI-DO application I made was using the ROS lane following baseline. After running it out of the box, I noticed a couple of problems and corrected them by changing several parameters in the code.”

 

 

Jacopo Tani - IMG_20181208_163935

4th Place

Team JetBrains

(Mikita Sazanovich)


Check out the submission.

The approach: “We used our framework for parallel deep reinforcement learning. Our network consisted of five convolutional layers (1st layer with 32 9×9 filters, each following layer with 32 5×5 filters), followed by two fully connected layers (with 768 and 48 neurons) that took as an input four last frames downsampled to 120 by 160 pixels and filtered for white and yellow color. We trained it with Deep Deterministic Policy Gradient algorithm (Lillicrap et al. 2015). The training was done in three stages: first, on a full track, then on the most problematic regions, and then on a full track again.”

5th Place

Team SAIC Moscow

(Anton Mashikhin)


Check out the submission.

The approach: Our solution is based on reinforcement learning algorithm. We used a Twin delayed DDPG and ape-x like distributed scheme. One of the key insights was to add PID controller as an additional  explorative policy. It has significantly improved learning speed and quality

A few photos from the day

AI-DO1 Submission Deadline: Thursday Dec 6 at 11:59pm PST

We’re just about at the end of the road for the 2018 AI Driving Olympics.

There’s certainly been some action on the leaderboard these last few days and it’s going down to the wire. Don’t miss your chance to see you name up there and win the amazing prizes donated by nuTonomy and Amazon AWS!

Submissions will close at 11:59pm PST on Thursday Dec. 6.

Please join us at NeurIPS for the live competition 3:30-5:00pm EST in room 511!

Kicking off the Duckietown Donation program with Cali, Colombia

Our first donation of a class kit goes to Cali, Colombia.

We’ve reached our Kickstarter goal! 

This is great news because it means that we can kick off our donation program, with our first donation of a Class Kit, to students at the Universidad Autónoma de Occidente in Cali, Colombia.

 

Why a donation program?

Artificial Intelligence and Robotics are the sciences of the future, which is why we want everyone to have the chance to play and learn with Duckietown. While we design our robot platform to be as inexpensive as possible, we realize that cost might be an obstacle for educators or students with limited resources.

That is why we have designed a donation program where individuals, organizations or companies can make Duckietown truly accessible to all. Everybody can support STEM education by donating Duckiebots, or an entire Class Kit, to deserving individuals or educators. 

Our first recipient

Our first recipient is Prof. Victor Romero Cano, a professor from the Universidad Autónoma de Occidente in Cali, Colombia. 

Victor has a Ph.D. in field robotics obtained at the University of Sydney, Australia. He teaches two courses at his institution,  and supervises over 40 undergraduate students who are working towards their final research projects.

 

 

Victor will teach two classes using the Duckietown platform. The first is an introductory class to robotics, covering kinematic analysis, teleoperation, control and autonomous navigation for wheeled robots. The second class is more specifically about robotic perception, and will go in detail about mapping and SLAM (simultaneous localization and mapping), covering lane detection as well as object detection, recognition and tracking.

 

Victor’s first Duckietown class starts in January 2019. We welcome him to the community and look forward to hearing about his journey!

You can help us sponsor more donations by sponsoring our Kickstarter.