Duckietown: An open, inexpensive and flexible platform for autonomy education and research

Duckietown: An open, inexpensive and flexible platform for autonomy education and research

Duckietown is an open, inexpensive and flexible platform for autonomy education and research. The platform comprises small autonomous vehicles (“Duckiebots”) built from off-the-shelf components, and cities (“Duckietowns”) complete with roads, signage, traffic lights, obstacles, and citizens (duckies) in need of transportation. The Duckietown platform offers a wide range of functionalities at a low cost. Duckiebots sense the world with only one monocular camera and perform all processing onboard with a Raspberry Pi 2, yet are able to: follow lanes while avoiding obstacles, pedestrians (duckies) and other Duckiebots, localize within a global map, navigate a city, and coordinate with other Duckiebots to avoid collisions. Duckietown is a useful tool since educators and researchers can save money and time by not having to develop all of the necessary supporting infrastructure and capabilities. All materials are available as open source, and the hope is that others in the community will adopt the platform for education and research.

Did you find this interesting?

Read more Duckietown based papers here.

Learning autonomous systems — An interdisciplinary project-based experience

Learning autonomous systems — An interdisciplinary project-based experience

With the increased influence of automation into every part of our lives, tomorrow’s engineers must be capable working with autonomous systems. The explosion of automation and robotics has created a need for a massive increase in engineers who possess the skills necessary to work with twenty-first century systems. Autonomous Systems (MEEM4707) is a new senior/graduate level elective course with goals of: 1) preparing the next generation of skilled engineers, 2) creating new opportunities for learning and well informed career choices, 3) increasing confidence in career options upon graduation, and 4) connecting academic research to the students world. Presented in this paper is the developed curricula, key concepts of the project-based approach, and resources for other educators to implement a similar course at their institution. In the course, we cover the fundamentals of autonomous robots in a hands-on manner through the use of a low-cost mobile robot. Each student builds and programs their own robot, culminating in operation of their autonomous mobile robot in a miniature city environment. The concepts covered in the course are scalable from middle school through graduate school. Evaluation of student learning is completed using pre/post surveys, student progress in the laboratory environment, and conceptual examinations.

Did you find this interesting?

Read more Duckietown based papers here.