This includes the development of a closed-loop PID control mechanism for continuous lane following, the use of AprilTag detection for intersection decision-making, and a state-driven behavior architecture to transition between tasks such as stopping, turning, and parking.
The system uses wheel encoder data for dead-reckoning-based motion execution in the absence of visual cues, and applies HSV-based color segmentation to detect and respond to static and dynamic obstacles. Visual servoing is used for parking alignment based on AprilTag localization. The control logic is modular and supports parameter tuning for hardware variability, with temporal filtering to suppress redundant detections and ensure stability.