AI-DO 1 at NeurIPS report. Congratulations to our winners!

The winners of AIDO-1 at NeurIPS

duckie-only-transparent

There was a great turnout for the first AI Driving Olympics competition, which took place at the NeurIPS conference in Montreal, Canada on Dec 8, 2018. In the finals, the submissions from the top five competitors were run from  five different locations on the competition track. 

Our top five competitors were awarded $3000 worth of AWS Credits (thank you AWS!) and a trip to one of nuTonomy’s offices for a ride in one of their self-driving cars (thanks APTIV!) 

2000px-Amazon_Web_Services_Logo.svg
aptiv_logo_color_rgb

WINNER

Team Panasonic R&D Center Singapore & NUS

(Wei Gao)


Check out the submission.

The approach: We used the random template for its flexibility and created a debug framework to test the algorithm. After that, we created one python package for our algorithm and used the random template to directly call it. The algorithm basically contains three parts: 1. Perception, 2. Prediction and 3. Control. Prediction plays the most important role when the robot is at the sharp turn where the camera can not observe useful information.

2nd Place

Jon Plante


Check out the submission.

The approach:  “I tried and imitate what a human does when he follows a lane. I believe the human tries to center itself at all times in the lane using the two lines as guides. I think the human implicitly projects the two lines into the horizon and where they intersect is where the human directs the vehicle towards.”

 

3rd Place

Vincent Mai


Check out the submission.

The approach: “The AI-DO application I made was using the ROS lane following baseline. After running it out of the box, I noticed a couple of problems and corrected them by changing several parameters in the code.”

 

 

Jacopo Tani - IMG_20181208_163935

4th Place

Team JetBrains

(Mikita Sazanovich)


Check out the submission.

The approach: “We used our framework for parallel deep reinforcement learning. Our network consisted of five convolutional layers (1st layer with 32 9×9 filters, each following layer with 32 5×5 filters), followed by two fully connected layers (with 768 and 48 neurons) that took as an input four last frames downsampled to 120 by 160 pixels and filtered for white and yellow color. We trained it with Deep Deterministic Policy Gradient algorithm (Lillicrap et al. 2015). The training was done in three stages: first, on a full track, then on the most problematic regions, and then on a full track again.”

5th Place

Team SAIC Moscow

(Anton Mashikhin)


Check out the submission.

The approach: Our solution is based on reinforcement learning algorithm. We used a Twin delayed DDPG and ape-x like distributed scheme. One of the key insights was to add PID controller as an additional  explorative policy. It has significantly improved learning speed and quality

A few photos from the day

AI-DO1 Submission Deadline: Thursday Dec 6 at 11:59pm PST

We’re just about at the end of the road for the 2018 AI Driving Olympics.

There’s certainly been some action on the leaderboard these last few days and it’s going down to the wire. Don’t miss your chance to see you name up there and win the amazing prizes donated by nuTonomy and Amazon AWS!

Submissions will close at 11:59pm PST on Thursday Dec. 6.

Please join us at NeurIPS for the live competition 3:30-5:00pm EST in room 511!

Announcing the AI Driving Olympics (AI-DO)

Press release The Duckietown Foundation is excited to announce the official opening of the The AI Driving Olympics, a new competition focused around AI for self-driving cars. The first edition of the AI Driving Olympics 2018 will take place in December 2018, at NIPS, the premiere machine learning conference, in Montréal. This is the first competition that will take place at a machine learning conference with real robots. The second edition of AI-DO is already scheduled to take place in May 2019 in conjunction with the International Conference on Robotics and Automation (ICRA) 2019.

The competition will use the Duckietown platform, a scaled-down affordable and accessible vision-based self-driving car platform used for autonomy education and research. This open-source project originated at MIT in 2016 and is now used by many institutions worldwide.

The AI Driving Olympics is presented in collaboration with 6 academic institutions: ETH Zurich (Switzerland), Université de Montréal (Canada), NCTU (Taiwan), TTIC (USA), Tsinghua (China) and Georgia Tech (USA), as well as two industry co-organizers: nuTonomy and Amazon Web Services (AWS).

The competition will comprise 5 challenges of increasing complexity: 1) Road following on an empty road; 2) Road following with obstacles; 3) Point-to-point navigation in a city network; 4) Point to point navigation in a city network with other vehicles; and 5) Fleet planning for a full autonomous mobility on demand system.

Competitors will have access to simulators, logs, reference implementations, and finally real environments (“Robotariums”) that will be remotely accessible for evaluation. The entries that score best in the robotariums will be run during the live event at NIPS 2018 to determine the winners.

 

The competition aims at directing academic research towards the hard problems of embodied AI, such as modularity of learning processes, and learning in simulation while deploying in reality. The competition also promotes the democratization of AI/robotics research by offering a common infrastructure available to everybody through the use of remote testing facilities.

Competitors can also build their own Duckiebots using provided DIY instructions, or buy Duckiebots and Duckietown hardware through a kickstarter campaign.

For rules and timeline, please see the site https://driving-olympics.ai/