The Workshop on Benchmarking Progress in Autonomous Driving at IROS 2020

The IROS 2020 Workshop on Benchmarking Autonomous Driving

Duckietown has also a science mission: to help develop technologies for reproducible benchmarking in robotics.  

The IROS 2020 Workshop on Benchmarking Autonomous Driving provides a platform to investigate and discuss the methods by which progress in autonomous driving is evaluated, benchmarked, and verified.

It is free to attend.

The workshop is structured into 4 panels around four themes. 

  1. Assessing Progress for the Field of Autonomous Driving
  2. How to evaluate AV risk from the perspective of real world deployment (public acceptance, insurance, liability, …)?
  3. Best practices for AV benchmarking
  4. Algorithms and Paradigms

The workshop will take place on Oct. 25, 2020 starting at 10am EDT

Invited Panelists

We have  a list of excellent invited panelists from academia, industry, and regulatory organizations. These include: 

  • Emilio Frazzoli (ETH Zürich / Motional)
  • Alex Kendall (Wayve)
  • Jane Lappin (National Academy of Sciences)
  • Bryant Walker Smith (USC Faculty of Law)
  • Luigi Di Lillo (Swiss Re Insurance), 
  • John Leonard (MIT)
  • Fabio Bonsignorio (Heron Robots)
  • Michael Milford (QUT)
  • Oscar Beijbom (Motional)
  • Raquel Urtasun (University of Toronto / Uber ATG). 

Please join us...

Please join us on October 25, 2020 starting at 10am EST for what should be a very engaging conversation about the difficult issues around benchmarking progress in autonomous vehicles.  

For full details about the event please see here.

Duckietown and NVIDIA work together for accessible AI and robotics education: Meet the NVIDIA powered Duckiebot

Duckietown and NVIDIA partnership for accessible AI and robotics education

NVIDIA GTC, October 6, 2020: Duckietown and NVIDIA align efforts to push the boundaries of accessible, state-of-the-art higher-education in robotics and AI. The tangible outcome is a brand new “Founder’s edition” Duckiebot, which will be broadly available from January 2021, powered by the new NVIDIA Jetson Nano 2GB platform.

Read the full NVIDIA announcement here.

Meet the NVIDIA powered Duckiebot

Autonomy is already changing the world. Duckietown and NVIDIA recognize the importance of hands-on education in robotics and AI to empower everybody today to understand and design the next generations of autonomy.

The result of this collaboration is a new NVIDIA powered Duckiebot, using the novel Jetson Nano 2GB board, that will enable local execution of machine learning agents in the Duckietown ecosystem. 

To celebrate this special occasion, the Duckiebot has been redesigned to include: new sensors (time of flight, IMU, encoders), a new custom-designed battery providing real time diagnostics (state of charge, remaining autonomy and other health metrics), and fun accessories like a screen to visualize key metrics. All of this while keeping the price accessible for anyone willing to experience the challenges of a real-life robotic ecosystem. 

A great team

“The new NVIDIA Jetson Nano 2GB is the ultimate starter AI computer for educators and students to teach and learn AI at an incredibly affordable price.” said Deepu Talla, Vice President and General Manager of Edge Computing at NVIDIA. “Duckietown and its edX MOOC are leveraging Jetson to take hands-on experimentation and understanding of AI and autonomous machines to the next level.”

“The Duckietown educational platform provides a hands-on, scaled down, accessible version of real world autonomous systems.” said Emilio Frazzoli,  Professor of Dynamic Systems and Control, ETH Zurich, “Integrating NVIDIA’s Jetson Nano power in Duckietown enables unprecedented access to state-of-the-art compute solutions for learning autonomy.”

Learn more

To know more about the technical specifications of the new NVIDIA powered Duckiebot, or to pre-order yours, visit the Duckietown project shop here.

The new Duckiebot will be also used in the “Self-driving Cars with Duckietown” Massive Online Open Course (MOOC) that will be held in March 2021 on edX. You can find more information about the MOOC here.

Prof. Krinkin

STEM Intensive Learning with Prof. Krinkin


In the world of engineering education, there are many excellent courses, but often the curriculum has one serious drawback – the lack of good connectivity between different topics. Over in Saint Petersburg, Russia, 
Kirill Krinkin from SPbETU and JetBrains Research has been using Duckietown to address this problem through an intensive STEM winter course.

STEM Intensive Learning Approach

by Kirill Krinkin

The first part of the school program was a week of classes in the base topic areas which were chosen to complement each other and help students see the connection between seemingly different things – mathematics, electronics and programming.

Of course, the main goal of the program was to give students the opportunity to put their new found knowledge into practice themselves.

Duckietown was the perfect fit for our course because it offered a hands-on learning experience for all of our main topics areas, and once we covered those subject in the first lessons, we challenged the students with much more complex tasks – in the form of projects – in the second half of the course. It made for an exciting and engaging curriculum because students could address a problem, write a program to solve it, and then immediately launch it on a real robot. 

The main advantage of Duckietown compared to many other platforms is that there is a very small learning curve: people who knew nothing about programming and robotics started working on projects after only a few days!

Overview of the course

Part 1 – Main Topic Areas

Subject 1: Linear Algebra

Students spent one day studying vectors and matrices, systems of linear equations, etc. Practical tasks were built in an interactive mode: the proposed tasks were solved individually, and the teacher and other students gave comments and tips.

 

Subject 2: Electricity and Simple Circuits

Students studied the basics of electrodynamics: voltage, current, resistance, Ohm’s law and Kirchhoff’s laws. Practical tasks were partially done in the electric circuits simulator or performed on the board, but more time was devoted to building real circuits, such as logic circuits, oscillatory circuits, etc.

 

Subject 3: Computer Architecture

In a sense, a bridge connecting physics and programming. Students studied the fundamental basis, the significance of which is more theoretical than practical. As a practice, students independently designed arithmetic-logic circuits in the simulator.

 

Subject 4: Programming

Python 2 was chosen as the programming language, as it is used in programming under ROS. After we taught the material and gave examples of solving problems, students were challenged with their own problems to solve, which we then evaluated. 

 

Subject 5: ROS

Here the students started programming robots. Throughout the school day, students sat at computers, running the program code that the teacher talked about. They were able to independently launch the basic units of ROS, and also get acquainted with the Duckietown project. At the end of this day, students were ready to begin the design part of the course – solving practical problems.

Part 2 – Projects

1. Calibration of colors

Duckiebots needs to calibrate the camera when lighting conditions change, so this project focussed on the task of automatic calibration. The problem is that color ranges are very sensitive to light. Participants implemented a utility that would highlight the desired colors on the frame (red, white and yellow) and build ranges for each of the colors in HSV format.

2. Duck Taxi

The idea of this project was that Duckiebot could stop near some object, pick it up and then continue along, following a certain route. Of course, a bright yellow Duckie was the chosen passenger. The participants divided this task into two: detection and movement along the graph.

drive while Duckie is not detected

Duckie identified as a yellow spot with an orange triangle 🙂

Building a route according to the road graph and destination point

3. Building a road map

The goal of this project was to build a road map without providing a priori environmental data for the Duckiebot, relying solely on camera data. Here’s the working scheme of the algorithm developed by the participants:

4. The patrol car

This project was invented by the students themselves. They offered to teach one Duckiebot, the “patrol”, to find, follow, and stop an “intruding” Duckiebot. The students used ArUco markers to identify the Intruder on the road as they are easy to work with and they allow you to determine the orientation and distance of the marker. Next, the team changed the state machine of the Patrol Duckiebot so that when approaching the stop-line the bot would continue through the intersection without stopping. Finally, the team was able to get the Patrol Duckiebot to stop the Intruder bot by connecting via SSH and turning it off. The algorithm of the patrol robot can be represented as the following scheme:

Summary

Students walked away from our STEM intensive learning program with the foundations of autonomous driving, from the theoretical math and physics behind the programming and circuitry to the complex challenges of navigating through a city. We were successful in remaining accessible to beginners in a particular area, but also providing materials for repetition and consolidation to experienced students. Duckietown is an excellent resource for bringing education to life.

After our course ended students were asked about their experience. 100% of them said that the program exceed their expectations. We can certainly say that the Duckietown platform played a pivotal role in our success.

Round 3 of the the AI Driving Olympics is underway!

The AI Driving Olympics (AI-DO) is back!

We are excited to announce the launch of the AI-DO 3, which will culminate in a live competition event to be held at NeurIPS this Dec. 13-14.

The AI-DO is a global robotics competition that comprises a series of events based on autonomous driving. This year there are three events, urban (Duckietown), advanced perception (nuScenes), and racing (AWS Deepracer).  The objective of the AI-DO is to engage people from around the world in friendly competition, while simultaneously benchmarking and advancing the field of robotics and AI. 

Check out our official press release.

  • Learn more about the AI-DO competition here.

If you've already joined the competition we want to hear from you! 

 Share your pictures on facebook and twitter

Duckietown Workshop at RoboCup Junior

Duckietown Workshop at RoboCup Junior 2019

In collaboration with the RoboCup Federation, the Duckietown Foundation will be offering workshops at RoboCup 2019 in Sydney, Australia, providing a hands-on introduction to the Duckietown platform.

We will be hosting three one-day workshops as part of RoboCup 2019 from July 4-6, 2019  for teachers, students, and independent learners who are interested in finding out more about the Duckietown platform. Attendance is completely free and everyone is welcome to apply, even if you are not participating in RoboCup.

There are no formal requirements, though basic familiarity with GNU/Linux and shell usage is recommended.

If you would like to apply to attend a workshop, please complete this form.

We will have Duckiebots and Duckietowns for participants to use. However, you are more than welcome to bring your own Duckiebots, available for purchase at https://get.duckietown.com.

We will be hosting three one-day workshops as part of RoboCup 2019 from July 4-6, 2019  for teachers, students, and independent learners who are interested in finding out more about the Duckietown platform. Attendance is completely free and everyone is welcome to apply, even if you are not participating in RoboCup. There are no formal requirements, though basic familiarity with GNU/Linux and shell usage is recommended.

 

If you would like to apply to attend a workshop, please complete this form.

We will have Duckiebots and Duckietowns for participants to use. However, you are more than welcome to bring your own Duckiebots, available for purchase at https://get.duckietown.com.

Congratulations to the winners of the second edition of the AI Driving Olympics!

Team JetBrains came out on top on all 3 challenges

It was a busy (and squeaky) few days at the International Conference on Robotics and Automation in Montreal for the organizers and competitors of the AI Driving Olympics. 

The finals were kicked off by a semifinals round, where we the top 5 submissions from the Lane Following in Simulation leaderboard. The finalists (JBRRussia and MYF) moved forward to the more complicated challenges of Lane Following with Vehicles and Lane Following with Vehicles and Intersections. 

Results from the AI-DO2 Finals event on May 22, 2019 at ICRA

If you couldn’t make it to the event and missed the live stream on Facebook, here’s a short video of the first run of the JetBrains Lane Following submission.

Thanks to everyone that competed, dropped in to say hello, and cheered on the finalists by sending the song of the Duckie down the corridors of the Palais des Congrès. 

A few pictures from the event

Don't know much about the AI Driving Olympics?

It is an accessible and reproducible autonomous car competition designed with straightforward standardized hardware, software and interfaces.

Get Started

Step 1: Build and test your agent with our available templates and baselines

Step 2: Submit to a challenge

Check out the leaderboard

View your submission in simulation

Step 3: Run your submission on a robot

in a Robotarium

Round 2 of the the AI Driving Olympics is underway!

The AI-DO is back!

We are excited to announce that we are now ready to accept submissions for AI-DO 2, which will culminate in a live competition event to be held at ICRA 2019 this May 20-22.

The AI Driving Olympics is a global robotics competition that comprises a series of challenges based on autonomous driving. The AI-DO provides a standardized simulation and robotics platform that people from around the world use to engage in friendly competition, while simultaneously advancing the field of robotics and AI. 

Check out our official press release.

The finals of AI-DO 1 at NeurIPS, December 2018

We want to see your classical robotic and machine learning based algorithms go head to head on the competition track. Get started today!

Want to learn more or join the competition? Information and get started instructions are here.

IEEE flyer

If you've already joined the competition we want to hear from you! 

 Share your pictures on facebook and twitter

 Get involved in the community by:

asking for help

offering help