AI-DO 5 competition Update

AI-DO 5 Update

AI-DO 5 is in full swing and we want to bring you some updates: better graphics, more maps, faster and more reliable backend and an improved GUI to submit to challenges! 

Challenges visualization

We updated the visualization. Now the evaluation produces videos with your name and evaluation number (as below).

Challenges updates

We fixed some of the bugs in the simulator regarding the visualization (“phantom robots” popping in and out). 

We updated the maps in the challenges to have more variety in the road network; we put more grass and trees to make the maps more joyful!

We have updated the maps with more trees and grass

Faster and more reliable backend

The server was getting slow given the number of submissions, and sometime the service was unavailable. We have revamped the server code and added some backend capacity to be more fault-tolerant. It is now much faster!

Thanks so much to the participants that helped us debug this problem!

We overhauled the server code to make it much faster!

More evaluators

We brought online many more CPU and GPU evaluators. We now encourage you to submit more often as we have a lot more capacity.

We have many more evaluators now!

Submit to testing challenges

We also remind you that the challenges on the front page are the validation challenges, in which everybody can see the output. However what counts for winning are the testing challenges!  

To do that you can use dts challenges submit with the –challenges option

Or, you can use a new way using the website that we just implemented, described below.

Submitting to other challenges

Step 1: Go to your user page, by clicking “login” and then going to “My Submissions”.

Step 2: In this page you will find your submissions grouped by “component”. 

Click the component icon as in the figure.

Step 3: The page will contain some buttons that allow you to submit to other challenges that you didn’t submit to yet.

Imitation Learning Approach for AI Driving Olympics Trained on Real-world and Simulation Data Simultaneously

Imitation Learning Approach for AI Driving Olympics Trained on Real-world and Simulation Data Simultaneously

The AIDO challenge is divided into two global stages: simulation and real-world. A single algorithm needs to perform well in both. It was quickly identified that one of the major problems is the simulation to real-world transfer. 

Many algorithms trained in the simulated environment performed very poorly in the real world, and many classic control algorithms that are known to perform well in a real-world environment, once tuned to that environment, do not perform well in the simulation. Some approaches suggest randomizing the domain for the simulation to real-world transfer.

We propose a novel method of training a neural network model that can perform well in diverse environments, such as simulations and real-world environment.

Dataset Generation

To that end, we have trained our model through imitation learning on a dataset compiled from four different sources:

  1. Real-world Duckietown dataset from logs.duckietown.com (REAL-DT).
  2. Simulation dataset on a simple loop map (SIM-LP).
  3. Simulation dataset on an intersection map (SIM-IS).
  4. Real-world dataset collected by us in our environment with car driven by PD controller (REAL-IH).

We aimed to collect data with as many possible situations such as twists in the road, driving in circles clockwise/counterclockwise, and so on. We have also tried to diversify external factors such as scene lighting, items in the room that can get into the camera’s field of view, roadside objects, etc. If we keep these conditions constant, our model may overfit to them and perform poorly in a different environment. For this reason, we changed the lighting and environment after each duckiebot run. The lane detection was calibrated for every lighting condition since different lighting changes the color scheme of the image input.

We made the following change to the standard PD algorithm: since most Duckietown turns and intersections are standard-shaped, we hard-coded the robot’s motion in these situations, but we did not exclude imperfect trajectories. For example, the ones that would go slightly out of bounds of the lane. Imperfections in the robot’s actions increase the robustness of the model. 

Neural network architecture and training

Original images are 640×480 RGB. As a preprocessing step, we remove the top third of the image, since it mostly contains the sky, resize the image to 64×32 pixels and convert it into the YUV colorspace.

We have used 5 convolutional layers with a small number of filters, followed by 2 fully-connected layers. The small size of the network is not only due to it being less prone to overfitting, but we also need a model that can run on a single CPU on RaspberryPi.

We have also incorporated Independent-Component (IC) layers. These layers aim to make the activations of each layer more independent by combining two popular techniques, BatchNorm and Dropout. For convolutional layers, we substitute Dropout with Spatial Dropout which has been shown to work better with them. The model outputs two values for voltages of the left and the right wheel drives. We use the mean square error (MSE) as our training loss.

Results

For the training evaluation, we compute the mean square error (MSE) of the left and the right wheels outputs on the validation set of each data source. 

The first table shows the results for the models trained on all data sources (HYBRID), on real-world data sources only (REAL) and on simulation data sources only (SIM). As we can see, while training on a single dataset sometimes achieves lower error on the same dataset than our hybrid approach. We can also see that our method performs on par with the best single methods. In terms of the average error it outperforms the closest one tenfold. This demonstrates definitively the high dependence of MSE on the training method, and highlights the differences between the data sources.

The next table shows simulation closed-loop performance for all our approaches using the Duckietown simulator. All methods drove for 15 seconds without major infractions, and the SIM model that was trained specifically on the simulation data only drove just 1.8 tiles more than our hybrid approach.

The third table shows the closed-loop performance in the real-world environment. Comparing the number of tiles, we see that our hybrid approach drove about 3.5 tiles more than the following in the rankings model trained on real-world data only.

Conclusion

Our method follows the imitation learning approach and consists of a convolutional neural network which is trained on a dataset compiled from data from different sources, such as simulation model and real-world Duckietown vehicle driven by a PD controller, tuned to various conditions, such as different map configuration and lighting. 

We believe that our approach of emphasizing neurons independence and monitoring generalization performance can offer more robustness to control models that have to perform in diverse environments. We also believe that the described approach of imitation learning on data obtained from several algorithms that are fitted to specific environments may yield a single algorithm that will perform well in general.

 —
 JBRRussia1 team

The “Self-Driving cars with Duckietown” Massive Open Online Course on edX

"Self-Driving Cars with Duckietown" hands-on MOOC on edX

We are launching a massive open online course (MOOC): “Self-Driving Cars with Duckietown” on edX, and it is free to attend! 

This course is made possible thanks to the support of the Swiss Federal Institute of Technology in Zurich (ETHZ), in collaboration with the University of Montreal, the Duckietown Foundation, and the Toyota Technological Institute at Chicago.

This course combines remote and hands-on learning with real-world robots. It is offered on edX, the trusted platform for learning, and it is now open for enrollment

Learning activities will support the use of Jetson Nano equipped Duckiebots, powered by NVIDIA.

Learning autonomy

Participants will engage in software and hardware hands-on learning experiences, with focus on overcoming the challenges of deploying autonomous robots in the real world.

This course will explore the theory and implementation of model- and data-driven approaches for making a model self-driving car drive autonomously in an urban environment.

Pedestrian detection: there are many obstacles in Duckietown - some move and some don't. Being able to detect pedestrians (duckies) is important to guarantee safe driving.

Pedestrian detection

MOOC Factsheet

Prerequisites

What you will learn​

Why Self-driving cars with Duckietown?

Teaching autonomy requires a fundamentally different approach when compared to other computer science and engineering disciplines, because it is multi-disciplinaryMastering it requires expertise in domains ranging from fundamental mathematics to practical machine-learning skills.

Robot Perception 

Robots operate in the real world, and theory and practice often do not play well togetherThere are many hardware platforms and software tools, each with its own strengths and weaknesses. It is not always clear what tools are worth investing time in mastering, and how these skills will generalize to different platforms. 

Duckiebot Detection: driving in Duckietown is fun but safety should always be paramount. DuckieBots can detect other vehicles and estimate their relative poses to avoid collisions.

Duckiebot Detection

Learning through challenges

Progressing through behaviors of increasing complexity, participants uncover concepts and tools that address the limitations of previous approaches. This allows to get Duckiebots to actually do things, while gradually re-iterating concepts through various technical frameworks. Simulation and real-world experiments will be performed using a Python, ROS, and Docker based software stack.

Robot Planning: as Duckietowns grow bigger, smart Duckiebots plan their path in town. Traffic signs at intersections provide landmarks to localize on the global map and determine next turns.

Robot Planning

(Hidden) This line and everything under this line are hidden

This course combines remote and hands-on learning with real-world robots.

It is offered on edX, the trusted platform for learning, and it is now open for enrollment.

Learning activities will support the use of NVIDIA Jetson Nano powered Duckiebots.

Join the AI Driving Olympics, 5th edition, starting now!

Compete in the 5th AI Driving Olympics (AI-DO)

The 5th edition of the Artificial Intelligence Driving Olympics (AI-DO 5) has officially started!

The AI-DO serves to benchmark the state of the art of artificial intelligence in autonomous driving by providing standardized simulation and hardware environments for tasks related to multi-sensory perception and embodied AI.

Duckietown hosts AI-DO competitions biannually, with finals events held at machine learning and robotics conferences such as the International Conference on Robotics and Automation (ICRA) and the Neural Information Processing Systems (NeurIPS). 

 The AI-DO 5 will be in conjunction with NeurIPS 2020 and have two leagues: Urban Driving and Advanced Perception

Urban driving league challenges

This year’s Urban League includes a traditional AI-DO challenge (LF) and introduces two new ones (LFP, LFVM).

Lane Following (LF)

The most traditional of AI-DO challenges: have a Duckiebot navigate a road loop without intersection, pedestrians (duckies) or other vehicles. The objective is traveling the longest path in a given time while staying in the lane.

Lane following with Pedestrian (LFP)

The LFP challenge is new to AI-DO. It builds upon LF by introducing static obstacles (duckies) on the road. The objectives are the same as for lane following, but do not hit the duckies! 

Lane Following with Vehicles, multi-body (LFVM)

In this traditional AI-DO challenge, contestants seek to travel the longest path in a city without intersections nor pedestrians, but with other vehicles on the road. Except this year there’s a twist. In this year’s novel multi-body variant, all vehicles on the road are controlled by the submission.

Getting started: the webinars

We offer a short webinar series to guide contestants through the steps for participating: from running our baselines in simulation as well as deploying them on hardware. All webinars are 9 am EST and free!

Introduction

Learn about the Duckietown project and the Artificial Intelligence Driving Olympics.

ROS baseline

How to run and build upon the “traditional” Robotic Operation System (ROS) baseline.

Local development

On the workflow for developing and deploying to Duckiebots, for hardware-based testing.

RL baseline

Learn how to use the Pytorch template for reinforcement learning approaches.

IL baseline

Introduction to the Tensorflow template, use of logs and simulator for imitation learning.

Advanced sensing league challenges

Previous AI-DO editions featured: detection, tracking and prediction challenges around the nuScenes dataset.

For the 5th iteration of AI-DO we have a brand new lidar segmentation challenge.

The challenge is based on the recently released lidar segmentation annotations for nuScenes and features an astonishing 1,400,000,000 lidar points annotated with one of 32 labels.

We hope that this new benchmark will help to push the boundaries in lidar segmentation. Please see https://www.nuscenes.org/lidar-segmentation for more details.

Furthermore, due to popular demand, we will organize the 3rd iteration of the nuScenes 3d detection challenge. Please see https://www.nuscenes.org/object-detection for more details.

AI-DO 5 Finals event

The AI-DO finals will be streamed LIVE during 2020 edition of the Neural Information Processing Systems (NeurIPS 2020) conference in December.

Learn more about the AI-DO here.

Thank you to our generous sponsors!

The Duckietown Foundation is grateful to its sponsors for supporting this fifth edition of the AI Driving Olympics!

Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents

Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents

Why is this important?

As robotics matures and increases in complexity, it is more necessary than ever that robot autonomy research be reproducible.

Compared to other sciences, there are specific challenges to benchmarking autonomy, such as the complexity of the software stacks, the variability of the hardware and the reliance on data-driven techniques, amongst others.

We describe a new concept for reproducible robotics research that integrates development and benchmarking, so that reproducibility is obtained by design from the beginning of the research/development processes.

We first provide the overall conceptual objectives to achieve this goal and then a concrete instance that we have built: the DUCKIENet.

The Duckietown Automated Laboratories (Autolabs)

One of the central components of this setup is the Duckietown Autolab (DTA), a remotely accessible standardized setup that is itself also relatively low-cost and reproducible.

DTAs include an off-the-shelf camera-based localization system. The accessibility of the hardware testing environment through enables experimental benchmarking that can be performed on a network of DTAs in different geographical locations.

The DUCKIENet

When evaluating agents, careful definition of interfaces allows users to choose among local versus remote evaluation using simulation, logs, or remote automated hardware setups. The Decentralized Urban Collaborative Benchmarking Environment Network (DUCKIENet) is an instantiation of this design based on the Duckietown platform that provides an accessible and reproducible framework focused on autonomous vehicle fleets operating in model urban environments. 

The DUCKIENet enables users to develop and test a wide variety of different algorithms using available resources (simulator, logs, cloud evaluations, etc.), and then deploy their algorithms locally in simulation, locally on a robot, in a cloud-based simulation, or on a real robot in a remote lab. In each case, the submitter receives feedback and scores based on well-defined metrics.

Validation

We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs. We built DTAs at the Swiss Federal Institute of Technology in Zurich (ETHZ) and at the Toyota Technological Institute at Chicago (TTIC).

Conclusions

Our contention is that there is a need for stronger efforts towards reproducible research for robotics, and that to achieve this we need to consider the evaluation in equal terms as the algorithms themselves. In this fashion, we can obtain reproducibility by design through the research and development processes. Achieving this on a large-scale will contribute to a more systemic evaluation of robotics research and, in turn, increase the progress of development.

If you found this interesting, you might want to:

IROS2020: Watch The Workshop on Benchmarking Progress in Autonomous Driving

What a start for IROS 2020 with the "Benchmarking Progress in Autonomous Driving" workshop!

The 2020 edition of the International Conference on Intelligent Robots and Systems (IROS) started great with the workshop on “Benchmarking Progress in Autonomous Driving”.

The workshop was held virtually on October 25th, 2020, using an engaging and concise format of a sequence of four 1.5-hour moderated round-table discussions (including an introduction) centered around 4 themes.

The discussions on the methods by which progress in autonomous driving is evaluated, benchmarked, and verified were exciting. Many thanks to all the panelists and the organizers!  

Here are the videos of the various sessions. 

Opening remarks

Theme 1: Assessing progress for the field of autonomous vehicles (AVs)

Moderator: Andrea Censi

Invited Panelists:

Theme 2: How to evaluate AV risk from the perspective of real world deployment (public acceptance, insurance, liability, …)?

Moderator: Jacopo Tani

Invited Panelists:

Theme 3: Best practices for AV benchmarking

Moderator: Liam Paull

Invited Panelists:

Theme 4: Do we need new paradigms for AV development?

Moderator: Matt Walter

Invited Panelists:

Closing remarks

You can find additional information about the workshop here.

The Workshop on Benchmarking Progress in Autonomous Driving at IROS 2020

The IROS 2020 Workshop on Benchmarking Autonomous Driving

Duckietown has also a science mission: to help develop technologies for reproducible benchmarking in robotics.  

The IROS 2020 Workshop on Benchmarking Autonomous Driving provides a platform to investigate and discuss the methods by which progress in autonomous driving is evaluated, benchmarked, and verified.

It is free to attend.

The workshop is structured into 4 panels around four themes. 

  1. Assessing Progress for the Field of Autonomous Driving
  2. How to evaluate AV risk from the perspective of real world deployment (public acceptance, insurance, liability, …)?
  3. Best practices for AV benchmarking
  4. Algorithms and Paradigms

The workshop will take place on Oct. 25, 2020 starting at 10am EDT

Invited Panelists

We have  a list of excellent invited panelists from academia, industry, and regulatory organizations. These include: 

  • Emilio Frazzoli (ETH Zürich / Motional)
  • Alex Kendall (Wayve)
  • Jane Lappin (National Academy of Sciences)
  • Bryant Walker Smith (USC Faculty of Law)
  • Luigi Di Lillo (Swiss Re Insurance), 
  • John Leonard (MIT)
  • Fabio Bonsignorio (Heron Robots)
  • Michael Milford (QUT)
  • Oscar Beijbom (Motional)
  • Raquel Urtasun (University of Toronto / Uber ATG). 

Please join us...

Please join us on October 25, 2020 starting at 10am EST for what should be a very engaging conversation about the difficult issues around benchmarking progress in autonomous vehicles.  

For full details about the event please see here.

Robust Reinforcement Learning-based Autonomous Driving Agent for Simulation and Real World

Robust Reinforcement Learning-based Autonomous Driving Agent for Simulation and Real World

We asked Róbert Moni to tell us more about his recent work. Enjoy the read!

The author's perspective

Most of us, proud nerd community members, experience driving first time by the discrete actions taken on our keyboards. We believe that the harder we push the forward arrow (or the W-key), the car from the game will accelerate faster (sooo true 😊 ). Few of us believes that we can resolve this task with machine learning. Even fever of us believes that this can be done accurately and in a robust mode with a basic Deep Reinforcement Learning (DRL) method known as Deep Q-Learning Networks (DQN).

It turned to be true in the case of a Duckiebot, and even more, with some added computer vision techniques it was able to perform well both in simulation (where the training process was carried out) and real world.

The pipeline

The complete training pipeline carried out in the Duckietown-gym environment is visualized in the figure above and works as follows. First, the camera images go through several preprocessing steps:

  • resizing to a smaller resolution (60×80) for faster processing;
  • cropping the upper part of the image, which doesn’t contain useful information for the navigation;
  • segmenting important parts of the image based on their color (lane markings);
  • and normalizing the image;
  • finally a sequence is formed from the last 5 camera images, which will be the input of the Convolutional Neural Network (CNN) policy network (the agent itself).

The agent is trained in the simulator with the DQN algorithm based on a reward function that describes how accurately the robot follows the optimal curve. The output of the network is mapped to wheel speed commands.

The workings

The CNN was trained with the preprocessed images. The network was designed such that the inference can be performed real-time on a computer with limited resources (i.e. it has no dedicated GPU). The input of the network is a tensor with the shape of (40, 80, 15), which is the result of stacking five RGB images. The network consists of three convolutional layers, each followed by ReLU (nonlinearity function) and MaxPool (dimension reduction) operations.

The convolutional layers use 32, 32, 64 filters with size 3 × 3. The MaxPool layers use 2 × 2 filters. The convolutional layers are followed by fully connected layers with 128 and 3 outputs. The output of the last layer corresponds to the selected action. The output of the neural network (one of the three actions) is mapped to wheel speed commands; these actions correspond to turning left, turning right, or going straight, respectively.

Learn more

Our work was acknowledged and presented at the IEEE World Congress on Computational Intelligence 2020 conference. We plan to publish the source code after AI-DO5 competition. Our paper is available on ieeexplore.ieee.org, deepai.org and arxiv.org.

Check out our sim and real demo on Youtube performed at our Duckietown Robotarium put together at Budapest University of Technology and Economics. .

Duckietown and NVIDIA work together for accessible AI and robotics education: Meet the NVIDIA powered Duckiebot

Duckietown and NVIDIA partnership for accessible AI and robotics education

NVIDIA GTC, October 6, 2020: Duckietown and NVIDIA align efforts to push the boundaries of accessible, state-of-the-art higher-education in robotics and AI. The tangible outcome is a brand new “Founder’s edition” Duckiebot, which will be broadly available from January 2021, powered by the new NVIDIA Jetson Nano 2GB platform.

Read the full NVIDIA announcement here.

Meet the NVIDIA powered Duckiebot

Autonomy is already changing the world. Duckietown and NVIDIA recognize the importance of hands-on education in robotics and AI to empower everybody today to understand and design the next generations of autonomy.

The result of this collaboration is a new NVIDIA powered Duckiebot, using the novel Jetson Nano 2GB board, that will enable local execution of machine learning agents in the Duckietown ecosystem. 

To celebrate this special occasion, the Duckiebot has been redesigned to include: new sensors (time of flight, IMU, encoders), a new custom-designed battery providing real time diagnostics (state of charge, remaining autonomy and other health metrics), and fun accessories like a screen to visualize key metrics. All of this while keeping the price accessible for anyone willing to experience the challenges of a real-life robotic ecosystem. 

A great team

“The new NVIDIA Jetson Nano 2GB is the ultimate starter AI computer for educators and students to teach and learn AI at an incredibly affordable price.” said Deepu Talla, Vice President and General Manager of Edge Computing at NVIDIA. “Duckietown and its edX MOOC are leveraging Jetson to take hands-on experimentation and understanding of AI and autonomous machines to the next level.”

“The Duckietown educational platform provides a hands-on, scaled down, accessible version of real world autonomous systems.” said Emilio Frazzoli,  Professor of Dynamic Systems and Control, ETH Zurich, “Integrating NVIDIA’s Jetson Nano power in Duckietown enables unprecedented access to state-of-the-art compute solutions for learning autonomy.”

Learn more

To know more about the technical specifications of the new NVIDIA powered Duckiebot, or to pre-order yours, visit the Duckietown project shop here.

The new Duckiebot will be also used in the “Self-driving Cars with Duckietown” Massive Online Open Course (MOOC) that will be held in March 2021 on edX. You can find more information about the MOOC here.

Community Spotlight: Arian Houshmand – Control Algorithms for Traffic

Boston University, March 7, 2019: No one likes sitting in traffic: it is a waste of time and damaging to the environment. Thankfully researcher Arian Houshmand from Boston University CODES lab is on the case, and he’s using Duckietown to help solve the problem.

Control algorithms to improve traffic

Traffic congestion around the world is worsening, according to transport data firm INRIX. In the U.S. alone, Americans wasted an average of 97 hours in traffic in 2018 – that’s two precious weekends worth of time. Captivity in traffic also costs them nearly $87 billion in 2018, an average of $1,348 per driver. Clearly, the need for smart transportation is reaching a fervor, not only to alleviate the mental and financial state of drivers, but to address the significant economic toll on affected cities.
Traffic congestion around the world is worsening, according to transport data firm INRIX. In the U.S. alone, Americans wasted an average of 97 hours in traffic in 2018 – that’s two precious weekends worth of time. Captivity in traffic also costs them nearly $87 billion in 2018, an average of $1,348 per driver. Clearly, the need for smart transportation is reaching a fervor, not only to alleviate the mental and financial state of drivers, but to address the significant economic toll on affected cities. Fortunately, development of intelligent mobility technologies is advancing.  In an ongoing research project funded by the U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) NEXTCAR program, BU researchers in collaboration with researchers from University of Delaware, University of Michigan, Oak Ridge National Lab, and Bosch are developing technologies for Connected and Automated Vehicles (CAVs) to increase their fuel efficiency and as a bi-product reduce traffic congestion.

The goal

The goal of this project is to design control and optimization technologies that enable a plug-in hybrid electric vehicle (PHEV) to communicate with other cars and city infrastructure and act on that information. By providing cars with situational self-awareness, they will be able to efficiently calculate the best possible route, accelerate and decelerate as needed, and manage their powertrain. This is an important task toward advancing the vision to create an ‘Internet of Cars,’ in which connected and self-driving cars operate seamlessly with each other and traffic infrastructure, improving fuel efficiency and safety, and reducing traffic congestion and pollution.

Today’s commercially-available self-driving cars rely on costly sensors, specifically radar, camera, and LIDAR (light) to operate semi-autonomously. In the NEXTCAR project, BU researchers with project collaborators are looking to go beyond that by developing decision-making algorithms to improve the autonomous operation of a single hybrid vehicle as well as algorithms for communications between vehicles and their environment, enabling self-driving cars to cooperate and interact within their socio-cyber-physical environment.

Several different functions have been developed throughout this project including:

●      Eco-routing: Procedure of finding the optimal route for a vehicle to travel between two points, which utilizes the least amount of energy costs.

●      Eco-AND (Economical Arrival and Departure): An optimal control framework for approaching a traffic light without stopping at the intersection by having traffic light cycle time information.

●      CACC (Cooperative Adaptive Cruise Control): An extension of adaptive cruise control

"We use Duckietown to train students on how to implement their algorithms on embedded systems and also as a means to demonstrate our developed technologies in action and in a live setting."

(ACC) that by benefiting from vehicle to vehicle (V2V) communication increases the safety and energy efficiency by reducing headway.

In order to validate and test the developed technologies, researchers first use simulation environments to test the algorithms. After verifying through simulation, they implement the algorithms on Duckietown, and finally deploy them on real cars (Audi A3 e-tron) at the University of Michigan’s M-city (test track for self-driving cars).

We use Duckietown to train students on how to implement their algorithms on embedded systems and also as a means to demonstrate our developed technologies in action and in a live setting. Since most of our research focuses on Connected and Automated Vehicles (CAVs), we need to establish connections between individual Duckiebots and traffic lights. As a result, we created a platform for exchanging information and control commands between all the cars and traffic lights.

Online localization of Duckiebots is a challenging task, and is missing from the current framework. We relied on our external motion capture sensors (OptiTrack) to localize the robots.

Duckietown is a nice platform for performing experiments on autonomous robots since It is relatively simple to set up the town and Duckiebots. Moreover, the built in perception and lane keeping capabilities are very useful to kick off experiments quickly. Traffic lights and signs are also helpful to create different scenarios for testing algorithms in city-like scenarios.

What would make Duckietown even more useful in our application is feedback sensors for determining wheel rotational speed/position as it is difficult to correct for rotational speed errors of the wheels and a ROS node for exchanging information between robots and traffic lights for testing collaborative control algorithms.

Learn more about Duckietown

The Duckietown platform enables state-of-the-art robotics and AI learning experiences.

It is designed to help teach, learn, and do research: from exploring the fundamentals of computer science and automation to pushing the boundaries of human knowledge.

Tell us your story

Are you an instructor, learner, researcher or professional with a Duckietown story to tell? Reach out to us!